Part Number Hot Search : 
PST3809 2N6277 M4558L F3JZ47 74HCT5 2N6277 4532C PEF24471
Product Description
Full Text Search
 

To Download IL206A Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 IL205A/206A/207/208A
SMALL OUTLINE SURFACE MOUNT PHOTOTRANSISTOR OPTOCOUPLER
FEATURES * High Current Transfer Ratio, IF=10 mA, VCE=5 V IL205A, 40-80% IL206A, 63-125% IL207A, 100-200% IL208A, 160-320% * High BVCEO, 70 V * Isolation Test Voltage, 2500 VACRMS * Industry Standard SOIC-8 Surface Mountable Package * Standard Lead Spacing, .05" * Available in Tape and Reel Option--Suffix "T" (Conforms to EIA Standard RS481A) * Compatible with Dual Wave, Fapor Phase and IR Reflow Soldering * Underwriters Lab File #E52744 (Code Letter P) DESCRIPTION The IL205A/206A/207A/208A are optically coupled pairs with a Gallium Arsenide infrared LED and a silicon NPN phototransistor. Signal information, including a DC level, can be transmitted by the device while maintaining a high degree of electrical isolation between input and output. The IL205/ 6/7/8 come in a standard SOIC-8 small outline package for surface mounting which makes them ideally suited for high density applications with limited space. In addition to eliminating through-holes requirements, this package conforms to standards for surface mounted devices. A specified minimum and maximum CTR allows a narrow tolerance in the electrical design of the adjacent circuits. The high BVCEO of 70 volts gives a higher safety margin compared to the industry standard 30 volts. Maximum Ratings Emitter Peak Reverse Voltage......................................6.0 V Continuous Forward Current..........................60 mA Power Dissipation at 25C ............................90 mW Derate Linearly from 25C ......................1.2 mW/C Detector Collector-Emitter Breakdown Voltage ...............70 V Emitter-Collector Breakdown Voltage .................7 V Collector-Base Breakdown Voltage ..................70 V Power Dissipation ......................................150 mW Derate Linearly from 25C ......................2.0 mW/C Package Total Package Dissipation at 25C Ambient (LED + Detector).....................................240 mW Derate Linearly from 25C ......................3.3 mW/C Storage Temperature ...................-55C to +150C Operating Temperature ................-55C to +100C Soldering Time at 260C.............................. 10 sec.
Dimensions in inches (mm) .120.005 (3.05.13) .240 (6.10) Pin One ID .192.005 (4.88.13) .004 (.10) .008 (.20) .050 (1.27) typ. .021 (.53)
Anode/ Cathode Cathode/ Anode NC NC
1 2 3 4
8 7 6 5
C L
.154.005 (3.91.13) .016 (.41)
NC Base Collector Emitter
.015.002 (.38.05) .008 (.20)
40
7 .058.005 (1.49.13) .125.005 (3.18.13) Lead Coplanarity .0015 (.04) max.
5 max. R.010 (.25) max.
.020.004 (.15.10) 2 plcs.
Characteristics (TA=25C)
Sym Emitter Forward Voltage Reverse Current Capacitance Detector Breakdown Voltage Collector-Emitter Emitter-Collector Leakage Current, Collector-Emitter Package DC Current Transfer IL205A IL206A IL207A IL208A DC Current Transfer IL205A IL206A IL207A IL208A Saturation Voltage, Collector-Emitter Isolation Test Voltage Equivalent DC Isolation Voltage Capacitance, Input to Output Resistance, Input to Output Switching Time CIO RIO tON, tOFF CTRDC 40 63 100 100 CTRDC 13 22 34 56 VCEsat VIO 2500 3535 0.5 100 3.0 25 40 60 95 0.4 VACRMS VDC pF G s IC=2.0 mA, RE=100 , VCE=10 V 80 125 200 320 % % IF=10 mA, VCE=5 V BVCEO BVECO ICEO 70 7 V V 50 nA IC=100 mA IE=100 A VCE=10 V VF IR CO 1.3 0.1 25 1.5 100 V A pF IF=10 mA VR=6.0 V VR=0 Min. Typ. Max. Unit Condition
10 5
IF=1 mA, VCE=5 V
IC=2.0 mA, IF=10 mA,
5-1
Figure 1. Forward voltage versus forward current
1.4
Figure 5. Normalized collector-base photocurrent versus LED current
10
NIcb - Normalized Icb
VF - Forward Voltage - V
1.3 1.2 1.1 1.0 0.9 0.8 0.7 .1
Ta = -55C Ta = 25C
1
Normalized to: Vcb = 9.3 V IF = 10 mA Ta = 25 C
Ta = 85C
.1
1 10 IF - Forward Current - mA
100
.01 .1
1 10 IF - LED Current - mA
100
Figure 2. Normalized non-saturated and saturated CTRce versus LED current
1.5
NCTRce - Normalized CTRce
Icb - Collector-base Current - A
1.0
Normalized to: Vce = 10 V IF = 10 mA Ta = 25 C
Figure 6. Collector-emitter photocurrent versus LED current
1000 Ta = 25C 100 10 1 .1 .1 1 10 100 IF - LED Curr ent - mA Vcb = 9.3 V
Vce = 5 V
0.5
Vce = 0.4 V 0.0 .1 1 10 100
IF - LED Current - mA
Figure 3. Collector-emitter current versus LED current
150 Ta = 25C Vce = 10 V 100
Figure 7. Collector-emitter photocurrent versus LED current
Iceo - Collector-Emitter - nA
Ice - Collector-emitter Current - mA
105 10 4 10 3
50 Vce = 0.4 V 0 .1 1 10 IF - LED Current - mA 100
10 2 10 1 10 0 10 -1 10 -2 -20 0 20 40 60 80 100 Ta - Ambient Temperature - C Vce = 10V TYPICAL
Figure 4. Normalized collector-base photocurrent versus LED current
NIcb - Normalized Icb
100
Figure 8. Base current versus If and HFE
2.0
NHFE(sat) - Normalized Saturated HFE
Normalized to: Vcb = 9.3 V 10 IF = 1 mA Ta = 25 C
1 .1 .1 1 10 IF - LED Current - mA 100
70C 25C 50C
1.5 1.0
Normalized to: Ib = 20A Vce = 10 V Ta = 25 C
Vce = 0.4 V 0.5 0.0 1 10 100 Ib - Base Current - A 1000
5-2
IL205A/206A/207A/208A
Figure 9. Typical switching characteristics versus base resistance (saturated operation)
100 Input: IF =10mA 50 Pulse width=100 mS Duty cycle=50%
Figure 10. Typical switching times versus load resistance
1000 Input: 500 IF=10 mA Pulse width=100 mS Duty cycle=50% 100 50 10 5 1
Switching time (s)
Switching time (S)
T OF
F
TO
FF
10 5
TON
TON
1.0 10K 50K 100K 500K 1M
0.1
0.5 1
5
10
50 100
Base-emitter resistance, RBE ()
Load resistance RL (K)
5-3
IL205A/206A/207A/208A


▲Up To Search▲   

 
Price & Availability of IL206A

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X